Variational Bridge Regression
نویسنده
چکیده
Here we obtain approximate Bayes inferences through variational methods when an exponential power family type prior is specified for the regression coefficients to mimic the characteristics of the Bridge regression. We accomplish this through hierarchical modeling of such priors. Although the mixing distribution is not explicitly stated for scale normal mixtures, we obtain the required moments only to attain the variational distributions for the regression coefficients. By choosing specific values of hyper-parameters (tuning parameters) present in the model, we can mimic the model selection performance of best subset selection in sparse underlying settings. The fundamental difference between MAP, maximum a posteriori, estimation and the proposed method is that, here we can obtain approximate inferences besides a point estimator. We also empirically analyze the frequentist properties of the estimator obtained. Results suggest that the proposed method yields an estimator that performs significantly better in sparse underlying setups than the existing state-of-the-art procedures in both n > p and p > n scenarios.
منابع مشابه
Non-conjugate Variational Message Passing for Multinomial and Binary Regression
Variational Message Passing (VMP) is an algorithmic implementation of the Variational Bayes (VB) method which applies only in the special case of conjugate exponential family models. We propose an extension to VMP, which we refer to as Non-conjugate Variational Message Passing (NCVMP) which aims to alleviate this restriction while maintaining modularity, allowing choice in how expectations are ...
متن کاملMerit functions: a bridge between optimization and equilibria
In the last decades, many problems involving equilibria, arising from engineering, physics and economics, have been formulated as variational mathematical models. In turn, these models can be reformulated as optimization problems through merit functions. This paper aims at reviewing the literature about merit functions for variational inequalities, quasi-variational inequalities and abstract eq...
متن کاملVariational inference in nonconjugate models
Mean-field variational methods are widely used for approximate posterior inference in many probabilistic models. In a typical application, mean-field methods approximately compute the posterior with a coordinate-ascent optimization algorithm. When the model is conditionally conjugate, the coordinate updates are easily derived and in closed form. However, many models of interest—like the correla...
متن کاملAssessing the performance of variational methods for mixed logistic regression models
We present a variational estimation method for the mixed logistic regression model. The method is based on a lower bound approximation of the logistic function (Jaakkola and Jordan, 2000). Based on the approximation, an EM algorithm can be derived that results in a considerable simplification of the maximization problem in that it does not require the numerical evaluation of integrals over the ...
متن کاملFunctional regression via variational Bayes.
We introduce variational Bayes methods for fast approximate inference in functional regression analysis. Both the standard cross-sectional and the increasingly common longitudinal settings are treated. The methodology allows Bayesian functional regression analyses to be conducted without the computational overhead of Monte Carlo methods. Confidence intervals of the model parameters are obtained...
متن کامل